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concept of knock-down factors — introduction

® . —> perfect structure

imperfect structure |

(

'
u
I:design = I:perfect X K
k<1 knock-down factor
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concept of knock-down factors — introduction

= standard design approch based on NASA SP-8007 (1968)
= provides lower-bound curves from experimental data

L= s ‘Buckling load of the perfect cylinder, scaled to 1

Knock down factor

Radius / Thickness
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concept of knock-down factors — introduction

= experimental testing & numerical prediction improved
= SP-8007 seems to be too conservative
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g 071 Example: CFRP cylinder
3 Total length = 540 mm
i | Free length = 500 mm
§ 0s 4 Ply orientation = +24 -24 +41 -41
7 Radius = 250 mm
04 1 Thickness = 0.5 mm
03 - R/t = 500
FPedect =32 kN
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CFRP — carbon fibre reinforced polymer
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concept of knock-down factors — introduction

less conservative design approach proposed, based on
numerical simulation results

old: {Fdesign I:perfect & knasa }

U

perfect

new: [Fdesign F X k; % sz

k, considers geometric imperfection using deterministic methods

k, considers other imperfections using stochastic methods
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buckling analysis — test cylinders

the new design concept was tested exemplarily with two
stiffened test cylinders

. material cylinder skin stiffener NASA SP8007

id knock-down | Test?
E u radius | height | thickness | thickness | height | number factor

A | 70000,0.34 | 400 | 1000 0.8 0.8 5.2 90 0.4616 ?

B | 70000, 0.34 | 400 | 1000 0.55 0.55 5.2 126 0.4387 YES

two different numerical models were used

= stringer shell model
= smeared shell model
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buckling analysis — stringer shell model

= explicitly modeled shell stringers

= 174960 S4R shell elements (Abaqus)

= S4R: reduced integration to avoid locking
= hourglass modes exist

discretization

= axial directions 216 elements
= between two stringers 6 elements
= stiffener height 3 elements
u=v=w=0
]
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buckling analysis — smeared shell model

= no modeled shell stringers
= 25100 S4R shell elements (Abaqus)

= |ess elements (factor 7)

= consideration of measured geometric
imperfections of unstiffened cylinders

[ 73747.59668  21528.72 0 31283.4956 0 0
21528.72  63319.7648 0 0 0 0
0 0 20895.5224 0 0 0
31283.4956 0 0 120724.922 1148.1984 0
0 0 0 1148.1984 3377.05412 0
i 0 0 0 0 0 1321.9469 |
]
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buckling analysis— comparison model A

= number of stiffeners 90

= thickness skin/stiffener 0.8 mm

model type linear buckling load
I:perfect

stringer model 205.92 kN

(174960 elements )

smeared model 203.27 kN

(25100 elements) (rel. dev 1.29%)

first buckling mode first buckling mode

stringer model smeared model
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buckling analysis— comparison model B

= number of stiffeners 126

= thickness skin/stiffener 0.55 mm

model type linear buckling load  F e
stringer model 103.09 kN
(174960 elements )

smeared model 103.76 kN

(25100 elements ) (rel. dev 0.65%)

first buckling mode first buckling mode

stringer model smeared model
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analysis design — deterministic study
I:design = I:perfect X kl . kZ

k, considers geometric imperfection using deterministic methods

k, considers other imperfections using stochastic methods

methods used to model geometric imperfections
= single perturbation load approach (SPLA)
applied to the stringer model

= modeling of measured imperfections (215, Z17, Z20)
applied to the smeared model
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knock-down curves — deterministic study

single perturbation load approach applied to stiffener model
= SPL on stiffener

= SPL in skin
1.2
1
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ge]
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3 —SPL on stiffener: global buckling
- = SPL on stiffener: first buckling
0.2 = SPL on skin: global buckling
+ SPL on skin: first buckling
D T T T T
0 50 100 150 200 250
single perturbation load [N]
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knock-down curves — deterministic study

imperfection approach applied to smeared model — cylinder A

with averaged knock-down factors from results of three
measurements 715, 7217, 720
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knock-down curves — deterministic study

imperfection approach applied to smeared model — cylinder B

with averaged knock-down factors from results of three
measurements 715, 7217, 720
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knock-down factors — deterministic study

m cylinder A cylinder B

O bar 0.2 bar 0 bar 0.2 bar
SPLA 0.620 0.800 0.640 0.828
meas. geometric 0.621 0.785 0.638 0.804
imperfections (rel dev. 0.29%) (rel dev. 1.87%) (rel dev. 0.31%) (rel dev. 2.89%)

= here: sufficient correspondence
= k, used from single perturbation load approach
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analysis design — stochastic study

I:design = I:perfect . k1 X kZ

k, considers geometric imperfection using deterministic methods

k, considers other imperfections using stochastic methods

cases considered

(1) geometric imperfection not included
applied to the smeared model to obtain k,

(2) geometric imperfection (215, Z17, Z20) included
applied to the smeared model for comparison with new KDF
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analysis pipeline — stochastic study

Monte Carlo simulation based on ABAQUS
buckling considered as probabilistic phenomenon due to distribution of

input parameters
analysis results

= results provide distribut.
of buckling loads

I
scatter of input lill_J‘> nonlinear buckling Iill_il>
parameters analyses

" material

thickness

with 99% confidence
level determines KDF

= |oad imperfection

| |
| I
| I
| |
geometric imperfection : | = lower bound defined
| I
| I
| I
| I
| I
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input parameter distribution — Sstochastic study

assumed normal distribution of input parameters (material, thickness skin

& stiffener, applied compressive load ) with

= a coefficient of variation (CV) =5% (measure of dispersion)

= o: standard variation

cv=2
" mean u := initial design / measured value Y7,
= number of samples used: 5000
= examples: modulus of elasticity, applied load
_E______ 4 Lapplied
i ~_
il I -i_!_"—'
56900 E 82500 ~_
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input parameter distribution — Sstochastic study

used checks for normal distribution of the input parameter

mean u = initial design / measured value

180 -Buckling_loags e
(1) histogram ,
5]“”' —Normal
§1oo I Data ] g:ggg— - Nu;mal dislribiution
S . 0:98- | Normal distribution | | : :
= 0.95-- -~ * Buckling loads — —_— z .
80+ 5, 0.90 s
40+ E 0.75
20+ '5 0.50
2
8 08 08 0% 1 1 14 1B 12 £ 025
Buckling load [N] x10° B 0.10
0.05- | m
. . . . . 002 ‘ ; i
(2) cumulative distribution function (CDF) 0003;7 .Data
;_55 UTQ 0.595 'Il 1.'55 1,i'| 1‘|15
Data x10°
(3) Lilliefors test: data accept the normal hypothesis with a 99%
confidence level
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knock-down factors — Stochastic study

= CV (coef. of variation) of load imperfection was varied: 3% 5% 10%

O bar 0.2 bar
geometric imperfections CV=3% 0.86 0.85 0.89
not included CV=5% 0.85 0.83 0.87
CV=10% 0.81 0.79 0.84
stochastic with geometric 215 0.70 0.61 0.79
imperfections included 717 0.65 0.63 0.78
720 0.68 0.66 0.81
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combined knock-down factors — design values

X k1><k2

I:design = I:perfect

0 bar 0.2 bar
k=k, xk, CV=3% 0.53 0.54 0.74
k, > geometric imperfect. CV=5% 0.52 0.53 0.72
k, > other imperfections CV=10% 0.50 0.50 0.69
stochastic with geometric 215 0.70 0.61 0.79
imperfections included 717 0.65 0.63 0.78
720 0.68 0.66 0.81
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combined knock-down factors — design values

1
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combined knock-down factors — design values

cylinder B-0.2 bar
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summary / conclusions

buckling performance of two stiffened cylinders was analysed

smeared model used
= considers measured geometric imperfections

= reduces computational complexity in stochastic MC-based analysis

two knock-down factors derived
= k, deterministic analysis => geometric imperfections
= k, stochastic analysis —> other imperfections (load, material,...)

combined approach is
= robust and less conservative compared to NASA SP8007

" more conservative than a pure stochastic approach
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